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Introduction

Endothelial cells (ECs) play an important role in maintenance of the vascular system and the
repair after injury. Under proinflammatory conditions, endothelial cells can acquire a
mesenchymal phenotype by a process named endothelial-to-mesenchymal transition (EndMT),
which affects the functional properties of endothelial cells (J C. Kovacic, MD, PhD,

2019). From past research, it is understood that by inhibiting a specific histone demethylase,
JMJD2B, EndMT is reduced (S Glaser et al., 2020). However, the proteins responsible and the
pathways influenced were not shown.

In this study, we will identify the proteins contributing to the decrease of EndMT during JIMJD2B
inhibition. We exposed human ECs of two types: one Wild-type (WT) and one with an siRNA
knock-down of IMJD2B (KD), to two media: Differential Medium (DIFF), which promotes EndMT
and Full medium (FULL), which will be the control. Microarray expression data is analysed, and
the programming language R is used to carry out data manipulation to identify features meeting
our specified cutoffs, and subsequently to map transcript clusters to their gene names and gene
IDs. REACTOME is then used to map the gene IDs of interest to their respective biological
pathways. Genes encoding proteins that reduce EndMT during JMJD2B inhibition are identified
using ENSEMBL. Line plots will be used to show expression levels of these genes in varying
conditions. Using knowledge of proteins that are known to induce EndMT from previous reports
as indicators, we identified genes encoding for proteins that reduce EndMT during JIMJD2B
inhibition. Possible protein mechanisms reducing EndMT were also identified.



Methods and Materials

. ibus (GEO!

GEO provides us with the expression data needed to observe differential gene expression.
Here, we used the expression data of genes from Affymetrix Human Exon 1.0 ST Array, in full
and differentiation medium under control and JMJD2B knockdown.

RStudio and REACTOME

RStudio is an integrated development environment for R, a programming language for statistical
computing and graphics. We used the packages GEOquery, affy, limma and oligo from
Bioconductor for oligonucleotide array analysis. Next, huex10sttranscriptcluster.db is used
for mapping transcript IDs to their gene names and Entrez gene ID. We used reactomePA and

reactome.db from REACTOME when mapping Entrez gene IDs to pathways. To present our
data, we used ggplot2, readr, ggpubr, and formattable. The script is attached to the Annex.

ENSEMBL Genome Browser

Information such as gene sequence, splice variants and further annotation can be retrieved at
the genome, gene and protein level using ENSEMBL. Here, we used ENSEMBL to identify the
genes encoding for proteins that inhibit Interleukin-1B and TGFp.

Interleukin-1B8 and TGER
Interleukin-1B and TGF are known to induce EndMT (Seol, M.A., Kim, J., Oh, K. et al., 2019).

Genes encoding for proteins that inhibits the pathways of either Interleukin-13 and TGF@ will be
classified as EndMT-reducing.

lentifvi : LCi MT duri nhibiti

The Microarray expression data was obtained from GEO (GSE143150) which comprises 12
gene expression files (Fig. 1). These file samples are categorised into 4 different conditions
(Media/Genotype): Differentiation Media/Wild-type (DIFF_WT), Differentiation
Media/Knockdown (DIFF_KD), Full media/Wild-type (FULL_WT) and Full media/Knockdown
(FULL_KD). We mainly focused on the expression data of every transcript cluster.



treatment genotype cond
GSM4250086 treatment: diffarentiation media (DM) genotypefvariation: Wild-typa DIFF WT
GSM4250987 treatment: differentiation media (DM} genotypeivariation: JMIDZB knockdown DIFF_KD
GSM4250088 full medium (FM) genotypetvariation; FULL WT
GSM4250989 full medium (FM) genotype/variation: JMJID2B kr FULL_KD
GSM4250090 treatment: difierentiation media (DM) genotypehvariation DIFF_WT
GSM4250891 treatment: differentiation media (M) genotypelvariation: JMIDZB knockdo DIFF_KD
GSM4250002 full medium (FMY) genotypehariatian FULL WT
GSM4250993 treatment: full medium (FM) genotype/variation: JMIDZE knock FULL KD
GSM4250094 trestment: diffarentiation media (M) genotypetvariation DIFF_WT
GSM4250995 treatment: diiferentiation media (DM) genatype/variation: JMJID2B knockdown DIFF_KD.
GSM4250896 treatment: full medium (FM) genotypefariation: Wild-type FULL WT
GSM4250987 treatment: full medium (FM) genotype/variation: JMID2E knockdown FULL KD

Background correction, normalisation and expression calculation is done using the function
rma(). Due to the multifactorial character of the GEO dataset, we had to use the Empirical
Bayes method on the dataset (method eBayes in R). The steps taken were as follows:

97 expression_data oligo: :rma(data) # Back und cor

98 eset exprs(expression_data

99 model model .matrix( @ + expression_dataScond) #linear de with intercept and th efficient f a nd DIFF_K DIFF_WT FULL_KD","FULL_WT")
100 colnames(model levels(expression_data$cond

101  contrasts makeContrasts(DIFF_KD - DIFF_WT, #Contrast betweer y

102 FULL_KD - FULL_WT, # y

103 FULL_KD - DIFF_KD, € d1a(DIFF

104 FULL_WT - DIFF_WT, ont t betwee dia(DIFF and FL

105 interaction-(DIFF_KD-DIFF_WT FULL_KD - FULL_WT), # tio
106 DIFF_KD - DIFF_WT) + ( FULL_KD - FULL_WT), #Contrast betwee

107 FULL_KD - DIFF_KD) ( FULL_WT - DIFF_WT), #Contrast betw

108 levels = model

109

110 expdata_fitted_contrasts ImFit(expression_data,model) #Expr: ion data undergoes Empirical Bay

111 fitted.contrasts contrasts. fit(expdata_fitted_contrasts,contrasts ubsequently fitted with the 7 differ

112 fitted.aebayes eBayes(fitted,contrasts ataset with rical Bay method af

P-value of 0.05 and Log Fold Change (logFC) value of 1 was set as the threshold for the genes.
We then tabulated which contrasts hold most of our transcript clusters passing cutoff (Fig. 2).
We also narrowed our attention to the contrast between different media in KD (Contrast 1), the
contrast between different media in WT (Contrast 2), and the contrast between different media
across both genotypes (Contrast 3). Volcano plots were used to depict the Log fold change in
expression levels of the genes in Contrasts 1,2 and 3, against their p-values (Fig. 3a, 3b and
3c).

Genotype_in DIFF Genotype in FULL Media_in KD Media in WT  Assuming Interaction Genotypes across media Media across genotypes

Transcript clusters with p-values<0.05 and logFC>1 o ] 194 -] 0 0 576
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Fig. 3a,3b and 3c: Plotted volcano plots for transcript clusters present in our dataset. The points circled in
red shows the features that meet the criterion for logFC>1 and p-value<0.05

Transcript clusters meeting the specified cutoff from Contrasts 1,2 and 3 were mapped
to their Entrez gene IDs. Mapped transcript clusters of Contrast 1 (MC1), Contrast 2
(MC2) and Contrast 3 (MC3) are obtained. Finding genes that are uniquely found in MC1
but not in MC3 allows us to filter out the differentially expressed genes specific to the
ECs of KD genotype across media (Genes_KD). Similarly, genes uniquely found in MC2
but not in MC3 are the differentially expressed genes specific to ECs of the WT genotype
across media (Genes_WT). There were a total of 20 genes found in Genes_KD and only
2 genes in Genes_WT (Figure 4a and 4b).

transcript_cluster_id SYMBOL GENENAME [ENSEMBLID ENTREZID
2592005 HIBCH 3-hydroxyisobutyryl-Com hydrolase ENSGO0000198130 26275
3505848 MINDYZ MINDY lysine 48 deubiquitinass 2 ENSGOU000128923 54629
2550790 LRPPRC leucine rich pentatricopeptide repeat containing ENSGOD000138095 10128
2520533 NABP1 mucleic acid binding protein 1 ENSGO0000173559 64850
2785282 SCLTY sodium channel and clathrin linksr 1 ENSGOD0O0151466 132320
2813060 PIK3R1 phaspheinositide-3-kinase regulatory subunit 1 ENSGO00O0145675 5295
2343823 ADGRLZ adnesion G protein-coupled receptor L2 ENSGO0000117114 23266
2789266 LABA LPS responsive beige-like anchor protein ENSGO0000198589 e87
2967278 POPDC3 popeye domain containing 3 ENSGO0000132429 64208
2536965 LOC285097 uncharacterized FLJ38379 ENSGO00002801 19 285007
2468820 GPSF3 cleavage and polyadenylation specific factor 3 ENSGO0000119203 51692
2577958 DARS1 aspartyl-ANA synthetase 1 ENSGO00001 15866 1615
2408420 CLSPN claspin ENSGO0000092853 63967
2781738 CFl complement factor | ENSGO0000205403 3426
2929038 L LTV1 ribcseme biogenesis factor ENSGOU000135521 84946
2639054 PARP14 polylADP-ribose] petymerase family mermiser 14 ENSGO0000173193 54825
2441386 RGSS regulator of G protein signaling 5 ENSGO0000143248,ENSGO0000232995 8490
2914777 K TTK protein kinase ENSGO0000112742 7272
2428798 PTPNZZ protein tyrosine phosphatase non-receplor type 22 ENSGOD000134242 26191
2555490 XPO1 exportin 1 ENSGO0000052898 7514

Fig.4a: 20 differentially expressed genes found in KD across media.



transcript_cluster_id SYMBOL GENENAME ENSEMBLID ENTREZID
3147985 LRP12 LDL receptor related protein 12 ENSGD0000147650 29987

2800059 H2BC14 H2B clustered histone 14 ENSGD0000273703 8342

To find all the pathways affected when JMJD2B is inhibited, we parsed Gene_KD through
REACTOME. We managed to locate 162 of such pathways (Fig 5).

pathways affected in KD cells across media (EndMT transition)
Extra-nuclear estrogen signaling

TCR signaling

PI3K events in ERBB4 signaling

Signaling by FGFR3 fusions in cancer

Signaling by FGFR4 in disease

GP1b-IX-V activation signalling

Erythropoietin activates Phosphoinositide-3-kinase (PI3K)
Constitutive Signaling by EGFRvIII

Signaling by EGFRvIIl in Cancer

PI3K events in ERBB2 signaling

Line plots were used to observe expression levels of genes in X in different conditions.
Expression values of each gene were obtained by using the expression data after background
correction and normalisation. After which, we used the mean expression values from all 4
different conditions of each gene (Fig.6).

EndMT is induced by proteins such as Interleukin-1p and TGFf (Jin Gu Cho, Aram
Lee,Woochul Chang,Myeong-Sok Lee, Jongmin Kim, 2018). Some of the genes found in
Gene_KD encodes for proteins that are related to the inhibition of those EndMT-inducing
proteins. Using ENSEMBL, we identified 3 genes from Gene_KD that encode for these proteins
and classified them as X. We also found that the 2 genes from Gene_WT but they were not
EndMT-related. Hence, we decided to focus only on Gene_KD.

Using data from Fig.5, we identified the possible ways gene products from X could have
reduced EndMT in KD ECs (Fig.7). This was done by mapping the pathways each gene in X
was responsible for.


https://www.ncbi.nlm.nih.gov/pubmed/?term=Cho%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20J%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
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Fig.6: Expression levels of 3 classified genes in X in 4 different conditions: DIFF_WT, DIFF_KD, FULL_WT,

FULL_KD.
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signaling

signaling

Cell-Cell communication
- Cell surface interactions at the vascular

- Interleukin receptor SHC signaling

- Interleukin-2 family signaling
- Interleukin-3, Interleukin-5 and GM-CSF

- Interleukin-4 and Interleukin-13

Fig.7: Possible ways X could have reduced EndMT during JMJD2B knockdown.



DISCUSSION AND ANALYSIS OF RESULTS

With the affy package in R, we utilised the RMA method to do background correction and
normalisation of the datasets analysed. Background correction is done to eliminate background
noise that arises non-specific hybridisation, overshining or technical imperfections (Sifakis,
2012). Furthermore, normalisation is done to the corrected data that are affected by
experimental inconsistencies such as limited sampling, differences in array production batches,
hybridization and washing conditions, scanning power, etc (Terri T Ni, 2008). A simple eBayes()
function then uses the empirical Bayes method to shrink the individual probe-wise sample
variances towards a common value that represents the overall distribution.

To determine if a gene is considered differentially expressed in a cell, we narrow down our data
to look at genes that are expressed differently by a worthwhile amount using a fold change of 1.
However fold-change cutoffs do not take into account reliability and reproducibility of the result.
Therefore, it is important to also ensure that our data satisfies the p-value criteria of less than

0.05. This means that there is only a 5% chance of obtaining a false positive (McCarthy, 2009).

Contrasts were made between datasets that were of the KD/WT genotype or in the FULL/DIFF
media to further study the effects of media change and knockdown of JMJD2B activity on the
ECs. Identification of the statistically significant genes revealed that the differentially expressed
genes were caused by the change in media in both WT and KD genotypes. Volcano plots of this
data were then plotted as shown in Fig. 3a,b and c.

After filtering out our data to focus on the effects of media in the ECs of WT and KD genotype,
we identified 22 genes that were differentially expressed between different media. Of them
consists of 20 genes from the KD cell and 2 from the WT cell. We then decided to take a closer
look into the biological pathway these proteins are involved in through the reactome platform.

In our study, we also used proteins such as Interleukin-1B and TGFf as indicators of EndMT.
Using these protein indicators, we picked candidates out of the 22 genes to be classified as
genes that contribute to reducing EndMT in IMJD2B KD ECs.

Using ENSEMBL, we identified 3 of such genes from the KD cell. The other 2 genes from WT
cells encodes for proteins that mostly regulates cell metabolism during inflammatory response,
and not directly affecting EndMT. Expression level of these 3 genes from KD ECs decreased in
differential medium, as shown in Fig.6. As differential medium simulates EndMT, these 3 genes
were downregulated in EndMT when JMJD2B is inhibited. In full medium, which is not EndMT-
inducing, these 3 genes were upregulated when JMJD2B is inhibited. Reasons as to why these
genes were upregulated or downregulated are to be addressed in future research.

We then evaluated the proteins encoded by the three genes related to the decrease in EndMT
based on the mechanisms that are unique to the cells that had an inhibition of the histone
demethylase JIMJD2B.



Exportin 1

The exportin 1 protein is involved in many pathways related to the EndMT process. When
parsed through REACTOME, we got pathways such as TGF-beta receptor signaling activates
SMADs and signaling by TGF-beta Receptor Complex. TGF-beta is a dimeric cytokine
produced from various cells in an inactive form. After activated through cleavage, it sends
signals to its receptors when in turn phosphorylates and activates SMAD pathways
(Pardali,2017). SMAD pathways are upregulated and forms SMAD complexes that can act as
transcriptional activators that increase expression of mesenchymal markers such as alpha
smooth muscle actin (SMA) which then leads to increased EndMT (Jin Gu Cho, Aram
Lee,Woochul Chang,Myeong-Sok Lee, Jongmin Kim, 2018). An reduced expression of exportin
1 found in cells of the KD genotype shows that there is a downregulation of TGF-beta receptor
signalling.This contributes to a lower expression of mesenchymal genes and therefore
decreased EndMT, which shows that the inhibition of IMJD2B using siRNA indeed affected the
EndMT process.

hosphoinositide-3.ki | bunit 1 ( ;

PIK3RL1 is also found to contribute to the EndMT process. PIK3R1 is involved in many pathways
related to interleukin signalling including Interleukin receptor SHC signaling, and signalling of
Interleukin 2,3,4,5,7,13 as seen from Fig.7. Interleukin is a well-known inducer of the EndMT
process. Interleukin 7 for example, when, used in treatment for cells increased the transcription
of EndMT-related genes (Seol, M.A., Kim, J., Oh, K. et al., 2019).

Furthermore, PIK3R1 plays a part in Cell-Cell communication as well as cell surface interactions
at the vascular wall pathways. EndMT is a process marked by a decrease in intercellular
adhesion forces in monolayer and cell stiffening and flattening (Ana Sancho,
Vandersmissen,Sander Craps,Aernout Luttun,and Jirgen Grollb, 2017). The downregulation of
PIK3R1 in KD cells when exposed to hypoxic conditions can suggest that there was limited
modulation of cell to cell communication as well as cell surface interactions, which made EndMT
less likely to occur. The decreased level of interleukin signalling also inhibits transcription of
mesenchymal genes.

PARP-14 is a member of the poly(ADP-ribose) polymerase family. Other than being involved in
metabolism and cell death, PARP-14 may also induce inflammatory responses by promoting
gene expression of related genes, including interleukin (IL)-1B, tumor necrosis factor (TNF)-a
and endothelin-1 (Yan, F., Zhang, G., Feng, M. et al., 2015). These genes combined lead to a
heightened expression of EndMT-related genes. When PARP-14 is expressed at a lower level,
it therefore leads to less endothelial to mesenchymal transitions.


https://www.ncbi.nlm.nih.gov/pubmed/?term=Cho%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20J%5BAuthor%5D&cauthor=true&cauthor_uid=29515588
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sancho%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28393890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vandersmissen%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28393890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vandersmissen%20I%5BAuthor%5D&cauthor=true&cauthor_uid=28393890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Craps%20S%5BAuthor%5D&cauthor=true&cauthor_uid=28393890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Luttun%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28393890
https://www.ncbi.nlm.nih.gov/pubmed/?term=Groll%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28393890

Conclusion

From our results, we found 3 genes that contributed to reducing EndMT during IMJD2B
inhibition. We also found possible ways these 3 genes could have reduced EndMT. Further
research can be conducted to understand how the regulation of these genes influenced their
respective mechanisms.
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Annex
162 genes from Figure 5

pathways affected in KD cells

1 Extra-nuclear estrogen signaling

2 TCR signaling

3 PI3K events in ERBB4 signaling

4 Signaling by FGFR3 fusions in cancer

5 Signaling by FGFR4 in disease

6 GP1b-IX-V activation signalling

7 jetin activates jinositide-3-kinase (PI3K)
8 Constitutive Signaling by EGFRwIIl

9 Signaling by EGERwII in Cancer
10 PI3K events in ERBB2 signaling
11 Role of LAT2/NTAL/LAB on calcium mobilization
12 GAB1 signalosome
13 signaling by NTRK3 {TRKC)
14 signaling by cytesolic FGFR1 fusion mutants
15 Tie2 Signaling
16 PI-3K cascade:FGFR3
17 Constitutive Signaling by Ligand-Respansive EGFR Cancer Variants
18 Nicotinamide salvaging
19 Ti of ZAP-70 to ical synapse
20 Signaling by Ligand-Responsive EGFR Variants in Cancer
21 Branched-chain amino acid catabolism

22 Processing of Intronless Pre-mRNAs

23 PI-3K cascade:FGFR4

24 PI-3K cascade:FGFR1

25 Phosphorylation of CD3 and TCR zeta chaine

26 CD28 dependent PI3K/Akt signaling

27 Signaling by FGFR3 in disease

28 Signaling by FGFR3 point mutants in cancer

25 Regulation of signaling by CBL

30 Nephrin family interactions

31 PI-3K cascade:FGFR2

32 Cytosolic tRNA aminoacylation

33 Estrog nuclear events of ESR

34 G alpha (g) signalling events
35 Signaling by EGFR in Cancer

71 Signaling by SCF-KIT
72 DAP12 interactions

73 Signaling by FGFR2 in disease

74 Cell Cycle Checkpoints

75 PI3K Cascade

76 Interleukin-2 family signaling

77 Signaling by Nuclear Receptors

78 Regulation of Complement cascade

79 IRS-mediated signalling

80 Interleukin-3, Interleukin-5 and GM-CSF signaling
81 Signaling by EGFR

82 Signaling by ERBB2

83 Signaling by FGFR1

84 IRS-related events triggered by IGF 1R

85 Apoptotic execution phase

86 Synthesis of PIPs at the plasma membrane

87 IGFIR signaling cascade

88 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)
89 Insulin receptor signalling cascade

90 Signaling by ERBBA

91 Complement cascade

92 Signaling by PDGF

93 mRNA 3'-end processing

94 Signaling by FGFR in disease

95 Metabolism of amina acids and derivatives

96 RNA Polymerase Il Transcription Termination

97 Costimulation by the CD28 family

98 Signaling by TGF-beta Receptor Complex

99 Signaling by FGFR2
100 RNA polymerase Il transcribes snRNA genes
101 Constitutive Signaling by Aberrant PI3K in Cancer
102 Signaling by Insulin receptar

103 Signaling by MET

104 Signaling by NTRK1 [TRKA)

105 Pl Metabolism

106 Transport of Mature Transcript to Cytoplasm

142 Influenza Infection

143 DNA Double-Strand Break Repair

144 G2/M Checkpoints

145 The citric acid (TCA) cycle and respiratory electron transport
146 Apoptosis

147 Programmed Cell Death

148 mRNA Splicing - Major Pathway

148 Major pathway of rRNA processing in the nucleolus and cytosol
150 Metabolism of vitamins and cofactors

151 Separation of Sister Chromatids

152 mRNA Splicing

153 rRNA processing in the nucleus and cytasol
154 G2/M Transition

155 Mitotic G2-G2/M phases

156 Mitotic Prometaphase

157 Cilium Assembly

158 Mitotic Anaphase

159 Mitotic Metaphase and Anaphase

160 rRNA processing

161 Phospholipid metabolism

162 Ub-specific processing proteases

36 Role of phospholipids in phagocytosis

37 Downstream signaling of activated FGFR3

38 Cyclin A/B1/B2 assaciated events during G2/M transition
39 Signaling by NTRK2 (TRKB)

40 Signaling by Erythropoietin

41 ESR-mediated signaling

42 Downregulation of TGF-beta receptor signaling

43 Downstream signaling of activated FGFR4

44 Interleukin receptor SHC signaling

45 Processing of Capped Intronless Pre-mANA

46 Downstream signal transduction

47 DAP12 signaling

48 Downstream signaling of activated FGFR2

49 NEP/NS2 Interacts with the Cellular Export Machinery
50 FGFR1 mutant receptor activation

51 Micotinate metabolism

52 Downstream signaling of activated FGFR1

53 TGE-beta receptor signaling activates SMADs

54 Antigen activates B Cell Receptor (BCR) leading to generation of second messengers

55 Export of Viral Ribonucleoproteins from Nucleus
56 CD28 co-stimulation

57 Rev-mediated nuclear export of HIV RNA

58 GPVI-mediated activation cascade

59 Interleukin-7 signaling

60 Interactions of Rev with host cellular proteins

61 Activation of ATR in response to replication stress
62 Apoptotic cleavage of cellular proteins

63 Signaling by FGFR1 in disease

64 Signaling by FGFR3

65 Transport of Mature mRNA Derived from an Intronless Transcript
66 Signaling by FGFRA

67 RET signaling
68 Transport of Mature mRNAs Derived from Intronless Transcripts
69 Deactivation of the beta-catenin g complex

70 tRNA Amincacylation

106 Transport of Mature Transcript to Cytoplasm

107 Fegamma receptor [FCGR) dependent phagocytosis

108 TP53 Regulates Metabolic Genes

109 Signaling by FGER

110 Regulation of mRNA stability by proteins that bind AU-rich elements
111 MAPKS/MAPK4 signaling

112 Amplification of signal frem the kinetochores

113 Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal
114 Downstream TCR signaling

115 Anchoring of the basal body to the plasma membrane

116 Processing of DNA double-strand break ends

117 VEGFA-VEGFR2 Pathway

118 Respiratory electron transport

119 Signaling by NTRKs

120 PI3K/AKT Signaling in Cancer

121 Signaling by TGF-beta family members

122 PISP, PP2A and IER3 Regulate PI3K/AKT Signaling

123 signaling by VEGF

124 Interleukin-4 and Interleukin-13 signaling

125 Negative regulation of the PI3K/AKT network

126 Mitotic Spindle Checkpoint

127 Signaling by the B Cell Receptor (BCR)

128 Selenoamino acid metabelism

129 Respiratory electron transport, ATP synthesis by chem| ic coupling, and heat

130 Metabolism of water-soluble vitamins and cofactors
131 Resolution of Sister Chromatid Cohesion

132 Cell-Cell communication

133 Host Interactions of HIV factars

134 HDR through bi HRR) or Single Strand Annealing (5SA)
135 Fc epsilon receptor (FCERI) signaling

136 Cell surface interactions at the vascular wall

137 Homology Directed Repair

138 Late Phase of HIV Life Cycle

139 RHO GTPases Activate Formins

140 Influenza Life Cycle

141 HIV Life Cycle

proteins.



R Script

#PRE-PROCESSING

library|GEOquery); brary(affy); library(limmal; library{olign]; library{readr); library{gzplot2); library{ggpubr); library( ReactomePA); vl library{r
library{huex10sttranscriptcluster.db)

F S—
#uncomment to unpack CEL files
#zet directory to file location

#untar("GSE143150_RAW.tar”,list=TRUE) ## check contents
#untar("GSE143150_RAW tar”)
Hlist files(pattern="* CELg")

#file. n=""*_CELgz"), paste0| ,SB6:997,".CEL g2°))
#list.files()

P

#——— Data extraction from files

#—— Functions for annotating IDs and Graph plotting

P

Annot <- data.frame(SYMBOL=sapply{contents[huex10sttranscriptclusterSYMBOL), paste, cllapse=","},
transcripte] ). paste, coliapse=","),

ENSEMBLID: i 1l riptcl ), paste, collapse=
ENTREZID=sapply( anscriptcl 1D}, paste, mllapse="

gse < getGEO['GSE143150',GSEMatrix = F)

genotype <- function{gsm)
Meta(gsm)[['characteristics_ch1']][2] #culture treatment is 3

}

treatment <- function{gsm) {
Meta(gsm)[['characteristics_ch1']][3] #EMT promoted

annotate_id <-function(x) {
y <-rownames(x)
z <-as.character(as.factor{xSlogFC))
item <- matri{data=NA, nrow=length{y), ncol=5)
i=1
for (ids in y) {
itemn[i, 1] <- ids
temp <- Annot[grep(ids,rownames{Annot]),]
iteml[i, 2] <- as charactar{temp[[1]])
item[i,3] <- as.character{temp[[2]])
iteml[i, 4] <- as.character{temp[[3]])
itemn[i, 4] <- as.character(temp[[3]])
p <- as.character{temp[[4]]}
itemli,5] <-p
i<l
i
colnames(item) <- ol transaipt_duster_id", 'SYMBOL",'GENENAME','ENSEMBLID', ENTREZID')
item <- as.data frame(item)
returniitem)

findplot <- functien(goi) { #insert gene of interest to function in string

goi <- goi
df <-data frame(T fact ist{gse), 1)
- factor]; {t ist{gse), 0.
Expression_Level = as.factor(eset[goi, ]|} #put GOI inside []
df as.factor(s )

levels(dfSGenotype) < c["KD","WT"}
df$Treatment<-as factor{dfSTreatment)
levels(dfSTreatment) <- df"DIFF","FULL"}

WIdiff <- mean(as_numeric(as_character{subset(dfSExpression_Level, df$Treatment == 'DIFF" & dfSGenotype = "WT')]])
wifull <- mean(z: icfas.chara ion_Level, dfSTreatment == "FULL' & dfSGenotype = "WT')}]}
mdiff <- mean(as numeric{as character(subset{dfSExpression_Level, df5Treatment == DIFF' & df$Genotype == "KD'})))
mifull <-mean(a icfas.character(. ion_Level, dfSTreatment == "FULL' & df$Genotype == "KD')}})

shell <-data.frame{Treatment=as factor{c{ DIFF, FULL", DIFF, FULL']),
Genotype=as factor(c{'WT', WT', 'KD', KD,
Expression_Level = as.factor{c{ widiff, wtfull, mdiff,mfull]})
shellExpression_Level <- as.numeric(as.character{shellSExpression_Level])
ion_Level <- _Level digit=2)
ssion_Level<-as.facts _Level)

g <- gaplot{data=shell,
aes(x=Genotype,y=Expression_Level,group=Treatment]] +
geom_line{ses{color=Treatment]) +
geom_peint{aes(color=Treatment)) +
gatitle{paste(as.character{Annat{grep goi rownames{Annot]], J[[2]1)))

[ —
= Processing ion Data and applying eBayes
#

apd < data framels factor { ist{gse), ) factord {GSMList{gse) N
apdScond <- as.factor tment,apd. vpe,sep="_"]}

levels(apdScond) <- ¢f"DIFF_KD","DIFF_WT","FULL_KD","FULL_WT")

acelfiles <- pastel{rownames{apd),.CEL g2')

data <- read_celfiles|acelfiles phenoData = new| " as data 111}

expression_data <- oligo::rma(data) # Background comection, Normalistation using rma) on dataset
eset < exprs|expression_data)
model <- model.matrix| ~ 0 + expression_dataScond) #linear model, with intercept and the coefficient for all conditions ("DIFF_KD","DIFF_WT","FULL_KD","FULL_WT"}
I 1) <- levels(expression_dataScond)
contrasts < makeContrasts(DIFF_KD - DIFF_WT, #Contrast between genotypes(KD and WT) in DIFF medium
FULL_KD - FULL_WT, #Contrast between genotypes(KD and WT) in FULL medium
FULL_KD - DIFF_KD, #Contrast between media{DIFF and FULL) in KD genotype
FULL_WT - DIFF_WT, #Contrast batween media[DIFF and FULL) in WT genotype
interaction={DIFF_KD-DIFF_WT) -{(FULL_KD - FULL_WT}, #Contrast between different genotype with different media, also known as interaction




(DIFF_KD - DIFF_WT) + | FULL_KD - FULL_WT), #Contrast between genotypes across media
(FULL_KD - DIFF_KD) + | FULL_WT - DIFF_WT), #Contrast between media across genotypes
levels = moded)

expdata_fitted_contrasts <- ImFit{expression_data,model} #Expression data undergoes Empirical Bayes method w.r.t linear model
fitted .contrasts <- contrasts. fitlexpdata_fitted_contrasts, contrasts) #5Subsequently fitted with the 7 differnt contrasts above
fitted asbayes <- eBayes(fitted.contrasts) #Dataset with Empirical Bayes method applied

true_gendiff <- topTable(fitted aebayes,coef = 1, number=Inf, p.value = 0.05,Ifc=1)
true_genfull < topTable|fitted aebayes, coef = 2,number=Inf p.value = 0.05, lfc=1)
true_mediakd <- topTable(fitted aebayes, coef = 3,number=Inf,p.value = 0.05, Ifc=1)
true_mediawt <- topTable(fitted.aebayes, coef = 4, number=inf p.value = 0.05, fc=1)
true_intxn <- topTable{fitted aebayes,coef = 5 number=inf,p_value = 0.05, lfc=1)
gen_in_allmedia <=~ topTable{fitted aebayes,coef = 6 number=Inf p.value = 0.05,c=1)
media_in_allgen < topTable(fitted acbayes,coef = 7,number=Inf,p value = 0.05, lfc=1)

#————————ftable 2

GOIS <- data.frame(Genotype_in_DIFF=nrow(true_gendiff),
Genotype_in_FULL=nrow({true_genfull),
Media_in_KD=nrow(true_mediakd),
Media_in_WT=nrow(true_mediawt],
Assuming_Interaction=nrow(true_intn},
Genotypes_across_media=nrow{gen_in_alimedia),
Media_across_genotypes=nrow{media_in_allgen])

row_namas(GOIS) <- c{Transcript custers with p-values<0.05 and logFC>1")

#— Mapped dusters that pass cutoff to their gene names and gene IDs using “huex riptclusterdb®, ion file for "Affymetric Human Exon 1.0 5T Amay"
H#— table 43 and 4b

# identify the differentially expressed genes found in KD' across media

# identify the differentially expressed genes found in WT across media

P
media_in_allgenl=as.data_frame|annotate_id{media_in_zligen)) #MC1

true_mediakd1= as.data frame( _id[true_mediakd)) #MC2

true_mediawtl= as data [ _id{true_mediawt)) #MC32

unique_genes_kd {true_mediakdl %in% media_in_allgen15GENENAME)) #Genes_KD
unique_genes_wt {true_mediawtl, %in% media_in_allgen15GENENAME)) #Genes_WT
#———— Parsing Reactome

# find the pathways affected during KD

KD_after_R <- enrichPathway{unique_genes_kdSENTREZID,organism = "human”, pvalueCutoff = 1, readable = T)
gene_media_kd = summary{KD_after_R)
gene_madia_kd <- subset{gene_media_kd, select=c{'genelD’, Description’,'GeneRatic’,'BgRatic’, pvalue’, Count’] | #5
unique ;_kd<-as_data ] (i :_media_kdSDescription)

I ique_p: ys_kd) <- "p ys affected in KD cells"

P
# plotting of line plots for genes in X

cluster_X <- ggarrange(findplot{"2555450°) findplot{*2639054") findplot{"2813060"),
ncol =3, nrow = 1)

# POST-PROCESSING
# POST-PROCESSING
# POST-PROCESSING

# number of transaipts meeting cut off for each contrast (2}

#\Vplots {3a,3b,3c) —> looking into 3 contrasts [1:Varying media in KD, 2: Varying media in WT, 3: Varying media acoss genotype]

# Mapped clusters that pass cutoff to their gene names and gene ID's using "huex10sttranscriptcluster.db”, annotation file for "Affymetric Human Exon 1.0 5T Amray"
# identify the differentially expressed genes found in KD across media (4a) <20=

# identify the differentially expressed genes found in WT across media (4b) <2>

# Parsed REACTOME: Pathways affectad in KD across media, WT across media, WT and KD across media (5a,5b,5c)

# Line plots of dassified genes ¥ (6)

formattable(G0IS) #table 2
#1594 GOIs <MEDIA_KD> #table 3a

volcanoplot{fitted.aebayes, coef = 3, main=sprintf("%d features (B media in KD) pass ctoff [LOG FOLD CHANGE >1, P-VALUE<0.05]"nrow({true_mediakd))); points(true_mediakd[["logFC']],-
logl0{true_mediakd[['P.Value']]),col="red’)

#B3 GOIs <MEDIA_WT> #1able 3b
volcanoplot(fitted.aebayes, coef = 4, main=sprintf("%d features (Between media in WT) pass cutoff [LOG FOLD CHANGE >1 , P-VALUE<0.05]",nrow(true_mediawt]}); points(true_mediawt]["logFC],-
logl0{true_mediawt[['P.Value']]},cl="red'}

#576 GOIs #table 3¢
volcanoplot(fitted.aebayes,coef = 7, main=sprintf{"%d features (B media across g ypes) pass cutoff [LOG FOLD CHANGE =1, P-VALUE<0.05]" nrow{media_in_allgen}}};
points{media_in_allgen[['logFC’]],-legl0{imedia_in_aligen[['P.Value']]),col="red")

formattable{unique_genes_kd) #table 4a <20 genes>
formattable{unique_genes_wt) #table 4b <2 genes>

for funi . kd,n=10)) #table 5 <162 pathways>
write.csv{unigue_pathways_kd, "figs.csv")

cluster_X #table &



